

电容式水位检测芯片 JL1011

产品规格书 V1.0

本公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而 对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,我司不保证和 不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它 原因可能会对人身造成危害的地方。本产品不授权适用于救生、维生器件或系统中作为关 键器件,本公司拥有不事先通知而修改产品的权利。

目 录

1.	产品概述	3
	主要特性	
3.	封装及引脚说明	3
	功能介绍	
	4.1 初始化时间	4
	4.2 水位检测	4
	4.3 灵敏度设置	4
	4.4 检测反应时间	4
	4.5 应用配置参考	
5.	应用电路	5
6.	PCB布线要求	5
7.	电气参数	6
	7.1 电气特性极限参数	6
	7.2 直流特性	
8.	封装尺寸图	7

1. 产品概述

JL1011 是一款电容式水位检测专用 IC, 它可以通过水槽外壁来检测水位的变化。该芯片具有宽工作电压、低功耗、高抗干扰能力的特性。

2. 主要特性

- 工作电压范围: 2.4~5.5V
- 待机电流约 9uA@V_{DD}=5V/C_{MOD}=10nF
- 单通道检测输入,单通道输出
- 水位检测应用
- 4级灵敏度配置
- 内置稳压源、上电复位和低压复位等硬件模块
- 检测输出经过了内部算法及消抖处理,效果稳定可靠
- HBM ESD 优于 5KV
- SOP8 封装

3. 封装及引脚说明

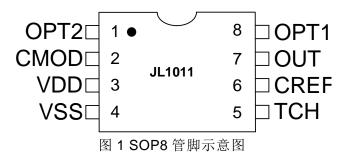


表 1 引脚说明

NO.	管脚名称	I/O	描述	
1	OPT2	I/O	灵敏度配置选项脚 2, 悬空为 1	
2	CMOD	I/O	采样电容输入脚	
3	VDD	Р	电源正	
4	VSS	Р	电源负	
5	TCH	I/O	检测通道	
6	CREF	I/O	参考通道	
7	OUT	I/O	输出脚	
8	OPT1	I/O	灵敏度配置选项脚 1, 悬空为 1	

4. 功能介绍

4.1 初始化时间

上电复位后,芯片需要 140ms 时间初始化来计算环境电容,之后再正常工作。

4.2 水位检测

当液面覆盖检测盘,检测到 TCH 脚电容值大于 CREF 基准电容值时,OUT 输出有效(高电平) 当液面低于检测盘,检测到 TCH 脚电容值小于 CREF 基准电容值时,OUT 输出无效(低电平)

4.3 灵敏度设置

- CREF 调试在合适值后,可通过以下方式改变检测的灵敏度。
 - 改变 CMOD 引脚的电容值(1~47nF)
 - 改变灵敏度等级(通过 OPT 引脚配置 4级)

模式	OPT1	OPT2	灵敏度等级
1	0	0	0(最高)
2	0	1	1(次高)
3	1	0	2 (次低)
4	1	1	3(最低)

- 灵敏度由 CREF 脚接的电容值与 TCH 脚寄生电容值的差值决定,CREF 电容大小应略大于 CH1 脚上的寄生电容。差值越小,灵敏度越高,一般来说,CREF 脚电容比 TCH 脚寄生电 容大约 0.2pF 左右。
- 若成品在系统上电后的无水状态下,触摸输出有效,说明 CREF 脚电容过小,应该调大。
- 若成品在系统上电后水位覆盖检测盘时,触摸输出无效,说明 CREF 脚电容过大,应该调小。
- CREF 脚电容应采用高精度 COG 或 NPO 电容,经过调试得到最佳电容值后将其固定下来。

4.4 检测反应时间

检测通道大约每隔 140ms 采样一轮。

4.5 应用配置参考

● 检测盘直贴应用

CMOD	CREF	灵敏度等级	检测盘	水槽壁厚	隔空	典型应用
10nF ±5%	2pF±0.25pF	3	10*20mm²	≤5mm	0mm	加湿器

● 检测盘隔空应用

CMOD	CREF	灵敏度等级	检测盘	水槽壁厚	隔空	典型应用
40nF ±5%	2pF±0.25pF	3	10*20mm²	≤3mm	≤2mm	饮水机

5. 应用电路

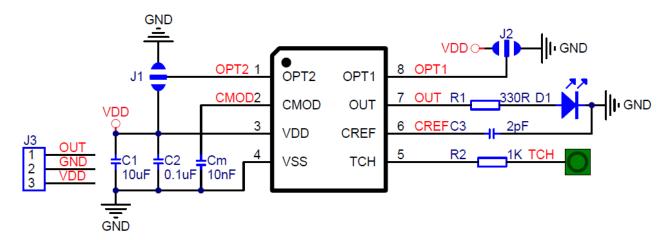


图 2 水位检测应用电路

注意: CMOD 为采样电容,通常取值范围为 1nF~47nF(默认 10nF),增大该电容可以提高灵敏度。

6. PCB布线要求

- 1. C1、C2 布局时应紧靠 IC 的 VDD 与 VSS 引脚放置
- 2. 检水通道走线应尽量细,线宽推荐使用 10mil
- 3. 检水通道的走线和检测盘应尽量远离其它元器件及高频信号源,以免外界因素干扰检测的准确性
- 4. 检测盘的投影面不能放置任何元器件、走线或铺地
- 5. IC 投影面应实心铺地,请参考 PCB 布线图

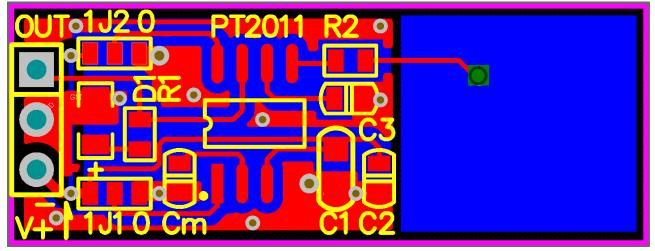


图 3 PCB 布线图

7. 电气参数

7.1 电气特性极限参数

表 2 极限参数

参数	标号	条件	范围	单位
供电电压	V_{DD}	-	-0 to +6.0	V
输入电压	Vı	所有 I/O 口	-0.3 to V _{DD} + 0.3	V
工作温度	T _A	-	-20 to + 70	°C
储藏温度	T _{STG}	-	-40 to + 125	°C

7.2 直流特性

表 3 直流特性(如无特殊说明 V_{DD} = 2.4V~5.5V, Temp = 25°C)

参数	标号	条件	最小值	典型值	最大值	单位
工作电压	V_{DD}		2.4		5.5	V
输入高电压阈值	V _{IH}		0.75V _{DD}			V
输入低电压阈值	V_{IL}				0.25 V _{DD}	V
输出 Source 电流	I _{OH_SO}	V _{DD} =5V, V _{OH} =9/10V _{DD}		-4.5		mA
和田 Source 电流		$V_{DD}=5V$, $V_{OH}=2/3V_{DD}$		-12		mA
输出 Sink 电流		V _{DD} =5V, V _{OL} =1/10V _{DD}		12		mA
押山 SINK 电流	I _{OH_} so	V _{DD} =5V, V _{OL} =1/3V _{DD}		28		mA
生扣 由 		V _{DD} =5V, Cmod=10nF		9		
一待机电流	I _{SB}	V _{DD} =3V, Cmod=10nF		6.5		uA

8. 封装尺寸图

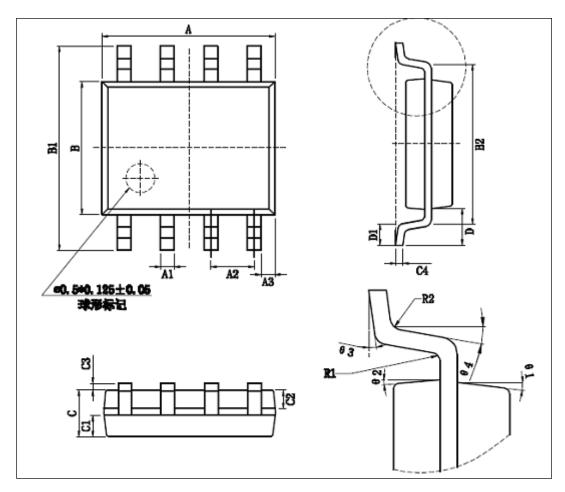


图 3 SOP8 封装

表 4 SOP8 封装尺寸

<i>///</i> □	尺寸	ナ(mm 单位	立)	
符号	最小值	典型值	最大值	
Α	4.80	-	5.00	
A 1	0.35	-	0.45	
A2	-	1.27	-	
А3	-	0.345	-	
В	3.80	-	4.00	
B1	5.80	-	6.20	
B2	-	5.00	-	
С	1.30	-	1.50	
C1	0.55	-	0.65	
C2	0.55	-	0.65	